De wetenschapsstijlen van Chunglin Kwa

Natuurlijk wil iedereen die zich met wetenschap bezighoudt wel toegeven dat de kennis die we nu als ‘waar’ zien er via een allegaartje van aanpakken gekomen is. Dat respectabele wetenschappers zoals Isaac Newton er vreemde, occulte ideeën op nahielden, die we nu zeker niet meer serieus nemen. Historisch gezien is er niet één vaste wetenschappelijke methode. Onze kennis heeft zich nu eenmaal op een rommelige en onstuimige manier ontwikkeld. Maar dat vinden we blijkbaar best ongemakkelijk.

Dat merken we wanneer we de geschiedenis van de wetenschap gaan beschrijven. Op een of andere manier zou het dan comfortabel zijn als één aanpak de beste bleek te zijn. Dat bepaalde principes, hoe abstract ook, steeds weer bleken te werken. En als dat niet kan, dan beschrijven we de geschiedenis van de wetenschap graag als een ontwikkeling. In dat verhaal hebben we onze wetenschappelijke methodes in de loop der tijd zodanig verfijnd, dat we inmiddels weten wat werkt en wat niet. Met de kennis van nu kunnen we beslissen welke oude aanpakken onzuiver waren, en aan welke grote denkers we ons succes van nu te te danken hebben.

Ik voel me niet senang met deze verhalen. Ze zijn me te dwingend. De geschiedenis wordt geschreven door overwinnaars, en zij leggen daarmee ook het verleden hun wil op. Onschuldig is dat niet. Het leest natuurlijk een stuk lekkerder als een verhaal over het verleden een beetje orde aanbrengt in al die verschillende wetenschappelijke probeersels – en nog eens bevestigt dat we nu lekker bezig zijn. Maar kunnen we echt niets beters verzinnen dan: “oude wetenschap is minder goed dan moderne wetenschap”? Kunnen we geen orde aanbrengen zonder Jan en alleman bij voorbaat te diskwalificeren? Kunnen we, anders gezegd, de diversiteit van onze zoektocht naar kennis niet vieren, in plaats van ze te ontkennen?

Chunglin Kwa doet in “De ontdekking van het weten” een dappere poging precies dat te bereiken. In plaats van één moderne visie op wetenschap op het verleden af te beelden, probeert hij verschillende aanpakken naast elkaar te beschrijven. Hij verdeelt de wetenschap in ‘stijlen’ en beschrijft de geschiedenis van elke stijl apart. Perfect is die aanpak niet, maar ik vind het idee erg verfrissend.

Het idee van een ‘wetenschappelijke stijl’

Misschien is het goed het concept van een wetenschappelijke stijl, zoals Kwa dat gebruikt, even iets meer toe te lichten. Een wetenschappelijke stijl is een manier om aan kennis te komen. Wetenschapsstijlen hebben hun eigen criteria voor goede wetenschap, eigen voorkeuren voor aanpakken die helpen ‘waarheid’ te produceren. Kwa onderscheidt zes stijlen: de deductieve, experimentele, analogisch-hypothetische, taxonomische, statistische en evolutionaire stijl. Zoals veel wetenschapshistorici laat hij techniek -of engineering- buiten beschouwing, maar hij erkent dat dit mogelijk een zevende stijl zou kunnen zijn en dat zijn set misschien nog andere elementen mist.

Het idee van een wetenschappelijke stijl is verwant aan het concept van een epistemische cultuur, zoals ik in mijn blogje kencultuur besprak. Karin Knorr Cetina, die dat begrip introduceerde, toonde aan hoe de gewenste aanpak en methoden, welke kwaliteiten van wetenschappers belangrijk worden gevonden, en de sociale organisatie van een laboratorium samenhangen met het studieonderwerp. Een wetenschappelijke stijl lijkt op een epistemische cultuur omdat er verschillen zijn in welke aanpakken legitiem worden gevonden, maar Kwa laat de sociale structuur buiten beschouwing. Hij richt zich op de opvattingen van wetenschappers over ‘waar’ of ‘niet waar’, en niet op ‘macht’, ‘reputatie’ en ‘aanzien’.

Het is ook verwant aan het idee van Paradigma’s van Thomas Kuhn. Maar het gaat bij Kwa niet om inhoudelijke stromingen die elkaar opvolgen en vaak uitsluiten. Wetenschapsstijlen kunnen naast elkaar bestaan en gemengd worden; en ze overstijgen vakgebieden. Het concept van een stijl is dus zuiverder en abstracter dan dat van een epistemische cultuur of paradigma. Daar zijn er ook veel meer van dan de zes stijlen van Kwa. Deze inperking is een groot voordeel bij geschiedschrijving: niemand wil twintig parallelle geschiedenissen doorworstelen.

De zes stijlen van Kwa.

De deductieve stijl

Kwa begint zijn boek met de deductieve stijl. Dit idee houdt in dat je de waarheid afleidt uit basisprincipes. Het gaat terug naar de oude Grieken, vooral Plato, Aristoteles en Euclides. Aristoteles is hierin misschien wel het belangrijkst. Hoewel hij meerdere wetenschappelijke stijlen gebruikte, beval hij de deductieve methode aan. Deze voorkeur is begrijpelijk, omdat deductieve redeneringen logisch sluitend zijn. Als je de ‘eerste principes’ kent waarmee de wereld is opgebouwd en daaruit andere kennis kunt afleiden, heb je een stevig bouwwerk dat niet gemakkelijk omvergegooid kan worden. Wie wil dat nou niet? Aristoteles had veel invloed.

Ik heb de deductieve redenering al eens uitgebreid bekritiseerd, maar naast inhoudelijke tegenargumenten zijn er ook historische beperkingen. Het deductieve model sloot namelijk bepaalde manieren van kennisontwikkeling uit. Deductief denken maakte waarneming ondergeschikt en experimenten zinloos, waardoor deze in de oudheid weinig status hadden. De focus op het abstracte en het eeuwige zorgde dat veel kennis waar we nu baat bij hebben buiten beschouwing werd gelaten en past minder goed bij onze huidige wereldbeschouwing.

De deductieve stijl raakte verloren met de oude Grieken, maar werd nieuw leven ingeblazen in de christelijke filosofie van de middeleeuwen. Deze filosofie beriep zich op Aristoteles’ advies, waarbij zijn ‘eerste principes’ werden geïnterpreteerd als ‘de wil van God’. Hieruit kwam het idee van een natuurwet voort: God zou de natuur zijn wil kunnen opleggen via wetten, die wetenschappers op hun beurt konden ontdekken. Dit idee van natuurwetten ontwikkelde zich verder, waardoor het langzaamaan ook geaccepteerd werd om natuurwetten te ontdekken die niet terug te voeren waren op abstracte eerste principes. Deze bevrijding van het Aristotelische ideaal was een belangrijke stap in de ontwikkeling van de experimentele stijl van wetenschap.

De experimentele stijl

Het is nu misschien moeilijk voor te stellen dat de wetenschap ooit niet experimenteel was, maar Kwa laat zien dat het experiment niet vanzelf zijn hoge status kreeg. De Grieken deden eigenlijk geen experimenten, en de ontwikkeling ervan vroeg om dingen die in de deductieve stijl ongebruikelijk waren. Om experimenten te doen zijn technische instrumenten en praktische, rekenkundige wiskunde nodig. Beide hadden in de tijd van Galileo Galileï een lage status en werden niet gezien als onderdeel van de wetenschap. Het was destijds gewoon geen optie om met technische meetinstrumenten vast te stellen hoe de wereld werkt. Galileï, die vaak wordt gezien als de eerste experimentele wetenschapper, maakte wel gebruik van deze instrumenten, maar ontstak daarmee niet in zijn eentje de experimentele revolutie. De tijd was nog niet rijp.

De culturele ruimte voor experimenten als bron van kennis ontstond misschien pas tijdens de Reformatie. Toen Maarten Luther zijn stellingen op de kerk van Wittenberg spijkerde, plantte hij ook een zaadje voor het experimentalisme. Hij stelde bijvoorbeeld dat zijn eigen geweten, en niet het gezag van de Kerk in Rome, de uiteindelijke toets was of iets voldeed aan de wil van God. Evenzo moesten experimentele wetenschappers durven hun eigen waarneming te vertrouwen, zelfs als die botste met de gangbare eerste principes van God. Filosofisch werden ze daarbij geholpen door het scepticisme, dat uit de Griekse tijd stamt maar onder protestanten aan populariteit won. Sceptici twijfelen aan alles en een gezonde dosis twijfel is nodig om experimenten aan te durven gaan.

Een andere ontwikkeling die het experimentalisme steunde, was de alchemie. In hun zoektocht om gewone metalen in goud te veranderen, voerden alchemisten veel experimenten uit. Dit was een wildere, meer verkennende manier van experimenteren dan de afgemeten en doelgerichte experimenten van Galileï. De alchemisten werkten ook vanuit een mengelmoes van theoretische inzichten, waarvan sommige nu als wetenschappelijk worden gezien en andere als occult. Precies die mix gaf een bepaalde vrijheid die in het deductieve model ongebruikelijk was. Ze konden allerlei ideeën met elkaar verbinden en zo tot nieuwe theorieën komen.

De alchemistische praktijk werd op haar beurt weer inspirerend gevonden door Francis Bacon, die in het protestantse Engeland het experimentalisme de nodige status en gezag gaf. Hoewel Bacon’s invloed op Nederlandse experimentele wetenschappers uit die tijd, zoals Christiaan Huygens, niet heel groot lijkt, deelden ze dezelfde praktische instelling. Met een experiment kan de onderzoeker de natuur zijn wil opleggen en haar daardoor beter leren kennen.

De hypothetisch-analogische stijl

De ontwikkeling van techniek gaf ruimte aan nog een nieuwe wetenschappelijke stijl: het opstellen van hypothesen over de werkelijkheid op basis van analogieën met techniek. Er zijn veel voorbeelden van deze benadering. René Descartes’ wereldbeeld zat vol mechanische vergelijkingen; hij probeerde alle natuurverschijnselen te verklaren als botsingen van deeltjes. Een concreter voorbeeld is William Harvey, die de bloedsomloop ontdekte door het hart te vergelijken met een pomp.

Het succes van deze analogieën leidde tot een mechanische kijk op de natuur, die in het werk van Isaac Newton het sterkst naar voren komt. Zijn ideeën stuitten wel lange tijd op weerstand omdat zijn zwaartekrachtstheorie een ‘kracht op afstand’ suggereerde; wat tijdgenoten als een occult idee beschouwden. Veel tevergeefs werk werd verzet om Newtons theorie te weerleggen of een mechanische verklaring voor zwaartekracht te vinden, maar omdat die pogingen niet succesvol waren, groeide Newtons invloed.

De technische analogie heeft een blijvende rol in de wetenschap, net zoals het gebruik van analogieën in het algemeen. Tegenwoordig zijn computers en informatica belangrijke bronnen van inspiratie voor dit soort analogieën. Veel moderne theorieën in de biologie, zoals die over het brein en de celbiologie, zijn gebaseerd op informatiekundige concepten. Ook in andere wetenschappelijke gebieden, zoals de kwantummechanica in de natuurkunde, vinden we informatiekundige begrippen terug.

De taxonomische stijl

Hoewel taxonomieën belangrijk zijn in veel wetenschapsgebieden en ook in veel alledaagse kennispraktijken, hebben ze als wetenschapsstijl geen hoge status. Een taxonomie is een systeem om bijvoorbeeld dingen, dieren, planten, begrippen of feiten te rangschikken, wat overzicht biedt. Als het ordeningsprincipe sterk is, kunnen taxonomieën heel nuttig zijn. Een klassiek voorbeeld is het periodiek systeem van elementen, dat heeft geholpen bij het ontdekken van nieuwe elementen en waar later theoretische inzichten aan zijn gekoppeld.

Maar het nut van taxonomieën gaat verder dan een opstapje naar diepere theoretische inzichten. Ze zijn belangrijk voor iedereen die grote hoeveelheden informatie moet ordenen, zoals in archeologie, biologie en medicijnen. In de biologie is de indeling van planten door Linnaeus een goed voorbeeld. Het herkennen van plantensoorten en hun eigenschappen is belangrijk voor biologen. In de geschiedenis is er alleen verschillend gedacht over welke kenmerken de indeling moesten bepalen. Linnaeus gebruikte geslachtskenmerken van planten, wat een basis legde voor moderne indelingen die nu op genetica zijn gebaseerd.

De statistische stijl

De statistiek helpt orde in de chaos te scheppen door individuen, of dat nou mensen zijn of waarnemingen vergelijkbaar te maken. Daarin gaat iets verloren: we reduceren dingen tot getallen. Maar we winnen ook iets: we kunnen iets leren van de vergelijking die dan mogelijk wordt. Mede daarom is de statistiek een wetenschappelijke stijl geworden die niet meer weg te denken is uit allerlei wetenschapsgebieden.

Statistiek ontstond aan het einde van de 18e en het begin van de 19e eeuw, met de bedoeling om de sociale wereld in objectieve gegevens te vangen en een wiskundige basis te vinden voor deze gegevens. Aanvankelijk was statistiek vooral beschrijvend, gericht op het verzamelen van gegevens. De Nederlander Adolphe Quetelet breidde het begrip uit met waarschijnlijkheidsrekening en foutenanalyse. De wiskundige basis voor waarschijnlijkheidsrekening werd ontwikkeld door Pascal, Fermat en Christiaan Huygens. De eerste toepassing was in het verzekeringswezen, terwijl foutenanalyse aanvankelijk werd toegepast in de astronomie.

In moderne tijden is de inferentiële statistiek onmisbaar. Deze statistiek maakt het mogelijk om variabelen met elkaar in verband te brengen. Inferentiële statistiek is ontwikkeld door Ronald Fisher en Egon Pearson en maakt een verantwoorde vorm van inductie mogelijk. Dit heeft misschien wel een revolutie teweeggebracht, zeker in de sociale wetenschappen. In de psychologie is deze statistiek bijvoorbeeld zo dominant geworden dat sommige tijdschriften het als voorwaarde stellen voor publicatie. Hierdoor verdringt dit type statistiek zelfs andere onderzoeksmethoden die niet met deze technieken werken.

De evolutionaire stijl

Bij de evolutionaire stijl denkt iedereen onwillekeurig aan Charles Darwin. Dat is terecht, maar een historische blik op dit werk is wel leerzaam. Twee patronen die je bij veel grote theorieën ziet gelden ook voor de evolutietheorie. Ten eerste moet de tijd ‘rijp’ zijn voor een bepaald soort idee. Dit zagen we bij de evolutietheorie doordat anderen rond die tijd met vergelijkbare ideeën kwamen. Ook stonden ideeën die als tegenargument voor de evolutietheorie konden gelden, zoals de ouderdom van de aarde, juist in Darwins tijd ter discussie. Daardoor was er ruimte om juist met deze inzichten te komen. Ten tweede is de evolutietheorie net als andere grote theorieën niet zonder slag of stoot geaccepteerd. Omdat evolutie op lange tijdschalen werkt was er lang geen tastbaar bewijs voor evolutie. Pogingen om aan te tonen dat over verschillende generaties heen nieuwe eigenschappen konden ontstaan mislukten. De evolutietheorie staat nu nog nauwelijks ter discussie, maar het heeft een eeuw geduurd voor de theorie deze status bereikte.

Wat interessant is aan de evolutietheorie, is dat het een nieuw tijdsbeeld introduceerde: de tijd als een ontwikkeling naar een betere of rijkere wereld. Tot Darwin was het lineaire (waarbij alles in wezen hetzelfde blijft) of cyclische (waarbij elementen eeuwig terugkeren) tijdsbeeld dominanter. Het evolutionaire denken heeft niet alleen de biologie beïnvloed, maar ook andere vakgebieden. Zo bevatten de thermodynamica en de sociale wetenschappen elementen van evolutionaire uitleg.

De waarde van wetenschappelijke stijlen als historische bril

Nu we de zes stijlen hebben besproken, is het goed om even afstand te nemen. Hoe pakt deze alternatieve wetenschapsgeschiedenis uit? Hoewel ik het idee om wetenschappelijke stijlen te onderscheiden en de geschiedenis ervan uit te vlooien heel charmant vind, voelt het project voor mij niet af. Dit komt door Kwa’s keuze van wetenschappelijke stijlen, het concept van wetenschappelijke stijl zelf, en hoe een wetenschappelijke stijl werkt als historische lens.

Laat ik dat toelichten. Bij Kwa’s keuze van wetenschappelijke stijlen valt op dat engineering er niet tussen staat. Net als veel van zijn collega’s plaatst Kwa techniek buiten de wetenschap, maar dat is niet terecht. Veel van onze kennis is technische kennis, en als we Kwa’s bespreking van de experimentele en hypothetische stijl volgen, heeft techniek altijd een belangrijke rol gespeeld in de geschiedenis. Misschien mist Kwa nog andere stijlen, maar deze had zeker niet mogen ontbreken.

Ik vraag me ook af of Kwa het idee van een wetenschappelijke stijl scherp genoeg heeft afgebakend. Evolutie lijkt bijvoorbeeld meer een verklaringsmodel dan een manier om nieuwe kennis te verwerven. Als evolutie een plek krijgt, zouden andere verklaringsmodellen zoals economische rationaliteit dan niet ook in de lijst moeten staan? Het is altijd lastig om iets als stijl, cultuur, of werkwijze goed af te bakenen, maar ik had gehoopt dat Kwa hier meer over zou zeggen.

En dan is er nog de vraag of wetenschapsstijlen een interessante blik geven op geschiedenis van de wetenschap. Een lens op de geschiedenis moet helderheid geven en nieuwe inzichten blootleggen. Dat doet het idee van wetenschappelijke stijl zeker. Kwa laat zien dat onze opvattingen over het denken in de loop van de tijd veranderd zijn en brengt die veranderingen in kaart.

Dit levert soms verrassende inzichten op, zoals de afhankelijkheid van experimentele wetenschappen van technische ontwikkelingen en de moeite die het kostte om experimenten geaccepteerd te krijgen als bron van kennis. Maar op andere plekken voegt het weinig toe. De besprekingen van de taxonomische en evolutionaire stijl blijven bijvoorbeeld binnen de biologie, waardoor het een beetje gissen blijft naar de bredere impact van deze denkmodellen.

Daarbij blijven de onderwerpen die Kwa bespreekt dicht bij de gebruikelijke thema’s in de wetenschapsgeschiedenis, namelijk de geschiedenis van de natuurwetenschappen in de context van de wetenschappelijke revolutie. Ik zou graag meer willen lezen. Waar is de psychologie in dit overzicht, met introspectie en behaviorisme als wetenschappelijke stijlen? Of breder, hoe hebben wetenschappelijke criteria in de geesteswetenschappen zich ontwikkeld?

Ik vind Kwa’s uitgangspunten erg veelbelovend. Misschien is de tijd rijp om de wetenschapsgeschiedenis breder te gaan zien en misschien kunnen we wetenschapsstijlen dan als breekijzer gebruiken. Kwa plant hiervoor veel zaadjes in zijn boek, zoals in het laatste hoofdstuk, waarin hij laat zien dat het begrip van wetenschap zelf samenhangt met je opvatting over wetenschapsstijlen. Het boek smaakt, kortom, naar meer.

Meer lezen?

Het boek van Chunglin Kwa “De ontdekking van het weten” is verkrijgbaar bij Boom Uitgeverij.

Een andere benadering om de wetenschapsgeschiedenis te verbreden is te vinden in de wetenschapsgeschiedenis van Rens Bod, die de geschiedenis wil ontdoen van zijn focus op westerse natuurwetenschap.

Ik scheef ook al eerder hoe ons denken over wat goede wetenschap is zich ontwikkeld heeft in anachronismen en waar en over de veranderende opvattingen over hoe we over de tijd denkenin vooruitgang en verandersnelheid. En over geschiedenis als vakgebied.

Het idee van een wetenschappelijke stijl is verwant aan die van een epistemische cultuur, waarover ik al eens blogde. Ik schreef ook al eens over inductie en deductie.

Over toepassingen van de evolutietheorie schreef ik eerder in evolutiesnelheid, memen, cultuurdragers en bezieling.

Helix

Ik kan me weinig onderwerpen voor de geest halen waar vormonderzoek zoveel impact had als bij het onderzoek naar de structuur van het DNA. De ontdekking van James Watson, Francis Crick, Maurice Wilkins en Rosalind Franklin in 1953 vormde een belangrijke schakel in de bewijsketen van de evolutietheorie. Het was de eerste grote mijlpaal in het vakgebied van de microbiologie en veranderde het onderzoek naar erfelijkheid definitief.

Dat is allemaal mooi, maar het allermooiste aan deze ontdekking is misschien dat er een heel smakelijk boekje over geschreven is door één van de onderzoekers. James Watson gaf in ‘The Double Helix’ een kijkje achter de schermen en liet zien hoe de ontdekking in zijn werk ging. Althans zijn versie ervan, want de bijdragen van de andere onderzoekers – en met name die van Rosalind Franklin – worden als bijzaak weggezet. Nog mooier dan het boekje zelf is misschien de controverse die er over ‘The Double Helix’ ontstond.

De ontdekking zelf hing ook van toeval en intriges aan elkaar. Dat begint al met het onderwerp. Het lag op dat moment helemaal niet voor de hand om de structuur van DNA te gaan onderzoeken. Begin jaren 50 was het nog onzeker of DNA wel een rol speelde in erfelijkheid. Onderzoekers namen aan dat erfelijke informatie in de cel moest worden vastgelegd en dat elke cel deze informatie moest bevatten. Maar er waren allerlei eiwitten in de cel en de informatie zou best eens verdeeld kunnen zijn over verschillende eiwitten. Dit was eigenlijk ook de heersende visie.

Dat de vier onderzoekers zich op DNA gingen toeleggen had te maken met experimenten met bacteriën in de jaren 40, die suggereerden dat DNA wel eens een grote rol zou kunnen spelen bij de erfelijkheid. Maar het was zeker niet zo dat men al dacht dat DNA de enige drager van erfelijk materiaal zou zijn. Dat het blootleggen van de structuur van het molecuul ook kennis zou opleveren over de rol van DNA bij erfelijkheid was ook helemaal niet aannemelijk.

Daarnaast was het lastig te achterhalen. De techniek om de structuur van moleculen bloot te leggen stond nog in de kinderschoenen. Men gebruikte daar röntgenstraling voor, maar dit soort straling kon niet door lenzen worden afgebogen, waardoor er niet zoiets bestond als een röntgenmicroscoop. Wat wel kon was een preparaat met röntgenstraling bestralen en dan kijken hoe de straling afboog. Afhankelijk van de buigingspatronen kon je de kenmerken van de moleculaire structuur herleiden. Het was een zeer pittige experimentele techniek omdat het materiaal dat bestraald werd heel goed geprepareerd moest zijn. Daarnaast viel er bij materialen die te complex waren niets meer te herleiden, omdat de buigingspatronen te ingewikkeld waren. Rosalind Franklin perfectioneerde deze techniek en stelde ons in staat die op zoiets complex als het DNA toe te passen.

Maar in ‘The Double Helix’ gaat James Watson eigenlijk niet in op dit experimentele werk. Het boekje leest eerder als een schelmenroman. Hoofdpersoon James Watson is een 24-jarige onderzoeker, vrij lui, arrogant en egocentrisch, maar wel gedreven om een grote ontdekking te doen. Hij is niet het soort onderzoeker dat zich bezighoudt met details, of het stap voor stap ontwikkelen van een nieuwe techniek om precieze metingen te kunnen doen. Nee, Watson is meer een vrijbuiter die her en der ideeën vandaan plukt en dan op basis van gissingen en intuïties tot nieuwe inzichten wil komen. Die moeten natuurlijk wel een beetje belangrijk en baanbrekend zijn want anders telt het niet. Francis Crick is hierin zijn partner in crime, maar ook wel zijn geweten – iemand met meer senioriteit, die de kritische vragen stelt.

Het balletje gaat rollen als Watson een presentatie ziet van Linus Pauling over een ander biologisch molecuul. Het heeft toevallig ook de vorm van een helix, maar dat is niet wat het meeste indruk maakt. De onderzoeker is achter de structuur gekomen door op basis van de Röntgenbeelden een model te maken van het molecuul. Ongeveer zoals je dat vroeger bij scheikunde gedaan zal hebben door bolletjes die atomen moesten voorstellen met stokjes te verbinden. Dat spreekt Watson aan: het moet voor hem op basis van wat er van DNA bekend is toch ook mogelijk zijn een model van DNA te maken? En misschien levert dat dan wel iets interessants op!

Dus gaan Watson en Crick aan de slag met hun moleculaire Lego, maar ze hebben er weinig succes mee.
Er is simpelweg te weinig van DNA bekend om zo’n structuur meteen te kunnen bouwen. Met behulp van de Röntgentechnieken van Wilkins en Franklin kunnen ze misschien wel iets meer te weten te komen, maar de relaties zijn niet bepaald warm. Daarbij hebben ze andere wetenschapsopvattingen: Wilkins en Franklin willen eerst de data laten spreken en Watson en Crick speculeren er op los. Wat ook niet helpt, is dat Watson en Crick in hun eigen lab weinig steun krijgen: men ziet weinig in het onderwerp en vindt dat ze te weinig progressie boeken.

Toch sprokkelt Watson stukje bij beetje de elementen bij elkaar die hij nodig heeft. Welke moleculen aan de binnenkant zitten en welke aan de buitenkant; het gegeven dat de aminozuren waarmee de dwarsverbindingen in DNA gemaakt worden in gelijke hoeveelheden voorkomen; het feit dat ook DNA een helixstructuur heeft en welke afstand er tussen de verschillende ringen moet zitten. Het meeste hiervan haalt hij uit foto’s van Franklin, die hij door de grote antipathie tussen de twee alleen indirect weet te verkrijgen. Het bouwwerk dat ze uiteindelijk maken is nog altijd een gok, maar het is een erg mooie oplossing. Dit is voor Watson en Crick reden om aan te nemen dat het wel waar moet zijn.

Waarom is die structuur zo van belang? Het is zeker een mooie structuur. Zo mooi dat die nu als symbool voor erfelijkheid dient, maar die culturele betekenis zal de natuur natuurlijk weer worst wezen. Dus wat wel?

Watson en Crick drukken het in hun artikel als volgt uit.

“It has not escaped our notice that the specific pairing we have postulated immediately suggests a possible copying mechanism for the genetic material.”

De ontdekking is dat de structuur van het DNA laat zien hoe je een precieze kopie van een gen kunt maken. De dwarsverbanden in de dubbele helix kunnen uit verschillende aminozuren bestaan, maar er zijn wel vaste paren van aminozuren. Bij celdeling kan het molecuul dus doormidden gesneden worden waarna de twee helften aangevuld kunnen worden met nieuw materiaal. Door de vaste paring kan dat maar op één manier, waardoor de kopie precies hetzelfde moet zijn als het origineel.

Het was destijds een kernprobleem hoe genetisch materiaal zo goed intact kon blijven als het bij elke celdeling opnieuw gekopieerd moest worden. De structuur van Watson en Crick loste dat op. De consequentie van dat inzicht is dat de genetische informatie omsloten zit in de volgorde van de aminozuren die de bruggen vormen. Elke brug vormt dan een letter die exact overgeschreven wordt bij deling. Dit biedt op haar beurt een verklaring voor de diversiteit van levensvormen die allemaal DNA als erfelijk materiaal gebruiken. Er kan immers op deze manier heel verschillende informatie opgeslagen worden in DNA (bijvoorbeeld voor verschillende dieren), die toch exact behouden blijft bij elke nieuwe kopie. Samen leiden deze aspecten van de structuur tot de conclusie dat DNA de drager van het genetische materiaal van levensvormen kan zijn.

‘The Double Helix’ laat zien hoeveel gokwerk er nodig was om tot deze structuur te komen, en hoe dun het bewijs voor deze structuur bij publicatie was. Laat staan voor de verdergaande conclusies die we er nu makkelijk aan kunnen verbinden. Het boekje verkondigt ook Watsons visie dat wetenschap in de eerste plaats om ideeën gaat en pas in de tweede plaats om experimenteel werk. En voor de oplettende lezer laat het zien hoe veel dat wringt. De waardeloze samenwerking tussen Watson en Franklin wordt door Watson bijvoorbeeld breed uitgemeten, maar de schuld wordt natuurlijk bij het karakter van Franklin gelegd en het feit dat ze een vrouw is. Watson lijkt zich niet schuldig te voelen over het feit dat hij haar metingen ‘leende’ zonder daar credits voor de ontdekking tegenover te stellen, terwijl het volstrekt duidelijk is dat ze zonder haar metingen nergens kwamen.

Dit is ook het mooie van het boekje. Het gebruikt een van de belangrijkste ontdekkingen uit de geschiedenis om de slechte kanten van de wetenschap te belichten. Het gaat niet bepaald over de zorgvuldigheid die je van het wetenschappelijk bedrijf mag vragen. Het gaat om het spel en het sociale proces met al haar intriges, die ook een rol spelen binnen dat systeem.

Dat brengt Watson met veel bravoure, waar je kritisch op kan zijn. Hij heeft immers een voorbeeldfunctie. Maar ik zie het meer als een karaktertrek van Watson. De onderzoeker die met Lego de structuur van DNA hielp ontdekken, is dezelfde als de onderzoeker die schaamteloos schreef over de rafelrandjes van die ontdekking. Watson was steeds iemand die zich weinig aantrok van hoe dingen horen. Ik vind het moeilijk om dat niet charmant te vinden.

Wel heb je je als lezer de plicht om je ook te verdiepen in de perspectieven van de andere spelers. Dit kun je bijvoorbeeld doen door ‘Rosalind Franklin and DNA’ van Anne Sayre te lezen. Dit boekje belicht de ontdekking vanuit het perspectief van een persoon die een voorbeeldiger wetenschapper was en die in de geschiedenisboeken thuis hoort. Want als je het mij vraagt is het Rosalind Franklin die, meer nog dan James Watson, aanspraak kan maken op de titel ‘ontdekker van de structuur van het DNA’.

Meer lezen?

Ik schreef eerder over de evolutietheorie in evolutiesnelheid en over gedachtenexperimenten als een manier om de wetenschap verder te brengen. Ik schreef over wetenschapssociologie in Lableven en De zwarte dozen van Latour.

Voor dit blogje maakte ik gebruik van The Double Helix van James Watson en Rosalind Franklin and DNA van Anne Sayre. De quote komt direct uit het oorspronkelijke artikel van Watson en Crick.

Op zoek naar het brein

Hoe zijn we erachter gekomen dat al onze zielenroerselen – ons denken over de meest alledaagse dingen tot de diepste vragen over onszelf en het bestaan, voortgebracht worden door een paar kilo weefsel ergens in ons hoofd?

Tot de negentiende eeuw was de vraag waar het denken plaatsvindt al even urgent als de vraag hoe het denken werkt. Omdat we nog weinig wisten van de natuurkunde en de biologie, en omdat we geen apparatuur hadden om eens goed te kijken wat er gebeurde in het lichaam. De breinwetenschap moest het tot de negentiende eeuw nog doen met veel gis- en conceptueel denkwerk. Iets waar we in de huidige, sterk experimentele wetenschap misschien juist wat meer behoefte aan hebben.

In ‘The Idea of the Brain’ laat Matthew Cobb zien dat het denken over het brein altijd sterk is beïnvloed door heersende theorieën buiten de breinwetenschap. Dat dit ideeën heeft opgeleverd waar we nog steeds op bouwen, mag haast niet verbazen.

Hart (tot 17e eeuw)
De eerste vraag die beantwoord moet worden is natuurlijk waar het brein zich bevindt, of preciezer: waar gedachten en gevoelens eigenlijk vandaan komen. Lang was het meest gegeven antwoord daarop het hart. Dat is ook niet zo vreemd als je bedenkt dat je hartslag verandert als je emotioneel wordt. Het hart is ook een actief orgaan, net zoals de gedachten actief zijn. Zonder biologielessen op de lagere school had je er waarschijnlijk net zo over gedacht.

Het is dan ook niet verrassend dat dit idee van het hart als denkorgaan lang dominant is geweest in de wetenschap. Aristoteles dacht al dat het denken in het hart zat – en tot in de middeleeuwen dacht bijna iedereen dat Aristoteles overal gelijk over had.

Het idee dat het centrum van het denken in ons hoofd zit en ideeën over de functie van de zenuwen ontstonden door experimenten op mensen en dieren. Leerlingen van Aristoteles viel het bijvoorbeeld al op dat mensenhersenen een complexere vorm hadden dan hersenen van dieren, terwijl mensen ook intelligenter leken dan dieren.

Na de Romeinse tijd lag het centrum van de wetenschap in de Arabische wereld, waar ideeën over het hart en het brein als oorsprong van ons mentale leven gebroederlijk naast elkaar bestonden. Het brein bestond misschien uit kamers met verschillende functies zoals waarnemen en inbeelden, redeneren en onthouden. Al die functies konden een eigen plek hebben in het brein. Misschien werden ze bewoond door geesten die weer hun oorsprong in het hart hadden. Al in de Romeinse tijd werd deze kamerhypothese weerlegd door anatomisch onderzoek. Er was in de anatomie van het brein niets te zien wat die functies kon verklaren.

Krachten (17e tot 18e eeuw)
In de wetenschappelijke revolutie mechaniseerde ons wereldbeeld. Wetenschap en techniek gingen hand in hand om oplossingen te vinden waarmee arbeid geautomatiseerd kon worden. Deze mechanische techniek werd vervolgens gebruikt als metafoor om mensen en dieren te begrijpen. Beroemd zijn plaatjes uit die tijd waar dieren voor het eerst als robots worden afgebeeld.

Zo verging het ook het brein. René Descartes dacht dat de geest iets fundamenteel anders was dan het lichaam en dat de geest het lichaam wist te besturen via de pijnappelklier. Het kernprobleem was hoe het brein er in kon slagen om invloed uit te oefenen op het lichaam. Dat de zenuwen een rol speelden werd algemeen aangenomen, maar hoe dat precies werkte bleef een groot raadsel. Oudere ideeën suggereerden dat die invloed het gevolg was van een bepaalde zenuwlucht (pneuma) of dat deze hydraulisch via een vloeistof werd overgebracht.

Gelukkig was de microscoop net uitgevonden. Die toonde aan dat er in de zenuwen geen ruimte was voor vloeistoffen of gassen. De filosoof John Locke stelde daarom voor dat het brein moest bestaan uit ‘denkende materie’. Dit werd als godlasterend gezien omdat de ziel dan niet onsterfelijk kon zijn. Daarnaast betekende het dat dieren, maar ook levenloze objecten, zouden kunnen denken – een idee dat iedereen absurd vond.

Elektriciteit (18e en 19e eeuw)
De opvolger van het krachtenidee was het idee van elektriciteit dat in de 18e eeuw populair werd. Hoewel dat nu een ‘correct’ idee lijkt, laat de geschiedenis vooral zien hoe weinig vooruitgang ermee geboekt werd.

Dat komt niet in de laatste plaats omdat elektriciteit zelf nog nauwelijks begrepen werd. Eerst was het nog vooral iets van circussen, waar elektriciteit als rariteit getoond werd. Later kreeg men iets meer controle met de uitvinding van de condensator en de batterij. Hoewel er bewijs was dat elektriciteit beweging kon stimuleren in kikkerbenen en in andere dieren, en dat men bepaalde sensaties elektrisch konden worden opgewekt, was geenszins duidelijk hoe dit precies samenhing met de werking van de hersenen.

Één probleem was dat zenuwsignalen veel langzamer waren dan elektriciteit in geleidende draden. Hermann von Helmholtz toonde aan dat zenuwsignalen ongeveer 30 m per seconde gingen. Dat is vrij traag. De waarneming zou dan altijd achterlopen. En ook voor het denken lijkt snelheid belangrijk. Een ander probleem was dat het niet logisch leek dat verschillende sensaties zoals zicht en gehoor dezelfde oorzaak zouden hebben. Ondanks dit gebrek aan bewijs was het idee van het elektrische brein populair. Het bekendste voorbeeld is Mary Shelley’s roman Frankenstein.

Functie (19e eeuw)
In de achttiende en negentiende eeuw ontstond ook het idee van functie en functielokalisatie. Dit past in het idee van het brein als een machine.

Het idee is dat bepaalde delen van het brein bepaalde functies vervullen. De schedelmetrie was op dit idee gebaseerd. Aan de hand van bulten in de schedel zou je iets kunnen vaststellen over iemands karakter. Schedelmetrie was altijd al controversieel en raakte uit de mode door gebrek aan bewijs.

Toch is lokalisatie geen vreemd idee. Er was bewijs doordat mensen met gedeeltelijk hersenletsel ook delen van hun vermogens kwijtraakten. Bij dieren kon je dit ook experimenteel aantonen. Door specifieke hersenbeschadigingen aan te brengen, kon worden aangetoond dat hun gedrag samenhing met de schade. En het toedienen van elektrische stoom in bepaalde delen van het brein had een vergelijkbaar effect.

Dergelijke experimenten konden natuurlijk niet bij mensen gedaan worden, hoewel sommige artsen hun kans grepen als ze konden. Berucht is het experiment op Mary Rafferty, door Roberts Bartholow. Mary’s brein lag bloot vanwege een scheur in haar schedel. Bartholow zette deze, naar eigen zeggen met goedkeuring van de patiënt, op verschillende plekken onder stroom hetgeen tot verschillende onwillekeurige reacties van de patiënt leidde.

Het experiment werd met interesse én afschuw bekeken. Het gaf steun aan het idee dat het brein gespecialiseerde gebieden kent, maar het werd ook als hoogst onethisch gezien. Naast ethische vragen was er iets anders waardoor het spoor doodliep. De experimenten met zwakstroom of via hersenbeschadiging waren zó grofmazig dat er te weinig echt nieuwe ontdekkingen mee gedaan konden worden.

Evolutie (19e eeuw)
De evolutietheorie wierp een nieuw licht op alle biologie, en dus ook op het brein. Op dit moment is het lastig een theorie te bedenken over het lichaam als het niet te verklaren is hoe een en ander geëvolueerd is, maar in de tijd van Charles Darwin moest de evolutietheorie bewijzen dat het oplossingen bood voor problemen van andere theorieën.

Om eerlijk te zijn lukte dat voor het brein aanvankelijk maar matig. Darwin was heel terughoudend met zijn ideeën over de evolutie van het brein en kwam pas geruime tijd na de ‘Origin of Species’ met het boek ‘The Descent of Man’ waarin hij zijn theorie over de evolutie van intelligentie ontvouwde.

In dit boek richt Darwin zich op de evolutie van gedrag. Hij somt gelijkenissen tussen mensen en dieren op. Insecten hebben sociale vermogens. Er zijn gelijkenissen tussen het gedrag van mensen en andere dieren. Huisdieren en primaten lijken emoties te hebben. Het past mooi in het gradualistische karakter van Darwins denken. Mensen hebben een combinatie van eigenschappen die we overal in de natuur terugvinden en die ontstaan zijn in een lange evolutionaire geschiedenis – bepaalde aspecten van de menselijke intelligentie zijn misschien verder ontwikkeld dan bij andere dieren, maar ze zijn niet essentieel verschillend.

Het was, en het is eerlijk gezegd nog steeds, zó moeilijk voor mensen om hun uitzonderingspositie in de natuur op te geven dat Darwins ideeën tot op de millimeter bevochten werden. Nog steeds heeft een wetenschapper als Frans de Waal moeite om de wetenschappelijke gemeenschap te overtuigen van het feit dat dieren empathie kunnen tonen. En het idee dat andere dieren dan mensen bewustzijn kunnen hebben wordt nog altijd bevochten.

Een belangrijk conceptueel probleem voor de evolutietheorie is dat het geen licht werpt op de relatie tussen het brein en ons bewustzijn. Hoe produceert het brein gedachten? De evolutietheorie heeft geen antwoorden. Snel na Darwins dood werd het idee van George Romanes populair dat alle materie bewustzijn heeft. Er zou een alles doordringende telepathische substantie bestaan, die los stond van de materie, maar die er wel mee kon interacteren. In de maalstroom van speculaties over het brein verdween het idee van evolutie naar de achtergrond, omdat het nog onvoldoende overtuigingskracht had.

Tot slot
Veel ingrediënten van het moderne denken over het brein hebben wortels in de vroege wetenschap: elektriciteit, lokalisatie van functie en evolutie. Maar deze jaren laten ook zien hoe een gebrek aan sterke ideeën over natuurkunde, biologie en informatiekunde de breinwetenschap bemoeilijkten.

Er was te weinig experimenteel bewijs om wetenschappers te dwingen antwoord te geven op specifieke vragen over het brein. Wetenschappers konden alleen speculeren over hoe het brein werkt. Het was daarom wachten op de twintigste eeuw waarin in de vorm van informatietechnologie, nieuwe modellen voor het begrijpen van het brein ontstonden én waar nieuwe manieren om het gedrag van het brein te leren kennen opgang deden.

Meer lezen?
Dit blogje is in zijn geheel gebaseerd op ‘The Idea of the Brain’ van Matthew Cobb. Het maakt het tweede deel uit van een serie die begin met de post ‘brein quintologie’ en verder gaat met ‘informatiewerker’, ‘gedachtenmeting‘ en ‘het onbegrijpelijke brein‘.

Over de evolutietheorie schreef ik als eens eerder in ‘evolutiesnelheid‘ over het idee dat materie bewustzijn kan hebben schrijf ik in panpsychisme.

Deze blogjes zijn natuurlijk vooral bedoeld om jullie lekker te maken om The Idea of the Brain zelf te lezen.

Cultuurdragers

Wat nou als de gedachten in je hoofd helemaal niet van jezelf zijn, maar dat je ze hooguit te leen hebt van een ander? Ik word zelf nogal kriebelig van dat idee: zeker als ik aan het schrijven ben, maar het is wel in de kern wat mementheoretici over gedachten beweren. Nou, misschien niet over al je gedachten, maar wel over verreweg de meesten.

Mementheorie is een soort culturele evolutietheorie. Daar waar biologische evolutie gestuurd wordt door genen, wordt – zo denken mementheoretici – culturele evolutie gestuurd door memen. Memen vermenigvuldigen zich door van menselijk hoofd tot menselijk hoofd te springen en bepalen zo hoe we denken en doen. Als mementheorie helemaal nieuw voor je is: ik schreef er al eens een uitgebreid blogje over.

Ik heb, dat gaf ik in dat blogje al ruiterlijk toe, gemengde gevoelens bij mementheorie en dat was voor mij reden om me er eens verder in te verdiepen. Zou mementheorie zich na de jaren ’70 ontwikkeld hebben tot een volwaardige wetenschappelijke discipline? Zouden er experimenten uitgevoerd zijn om mementheorie te toetsen? Zouden theoretici er in geslaagd zijn het idee van memen meer handen en voeten te geven? Ik kon mijn geluk dus niet op toen bleek dat er een relatief recent, populair wetenschappelijk boekje over bestaat: The Meme Machine van Susan Blackmore. Tijd voor een bespreking dus.

Imitatie vormt de basis van Blackmore’s behandeling van memen. Volgens Blackmore is imitatie – kunnen leren door iemand iets te zien doen – een eigenschap die min of meer uniek is voor mensen. Doordat mensen kunnen imiteren kunnen ze leren van elkaar en daardoor ontstaat cultuur. De eerste imiterende mensen gingen werktuigen maken, spreken, hun doden begraven, […], de Universele Verklaring van de Rechten van de Mens tekenen, naar de maan reizen, etc.

Nou ja, misschien loop ik nu wat op de zaken vooruit. Culturele ontwikkeling is dus te begrijpen als een evolutieproces. Mensen die elkaar imiteren geven volgens Blackmore memen door.  Als ik jou zie dansen en ik doe je na, dan springt er een meme over van jouw brein naar mijn brein.

Wat een meme is weet niemand precies. Ik houd het zelf op zoiets als “ideeën”, maar verschillende mementheoretici hanteren verschillende definities en Blackmore houdt het dus bij “datgene dat doorgegeven wordt bij imitatie”.  Waar mementheoretici het wel over eens zijn, is dit: sommige van die memen zijn succesvol – in die zin dat ze makkelijk en vaak doorgegeven worden -, anderen zijn minder succesvol en sterven uit. Als iedereen ons dansje na gaat doen is het een succesvolle dansmeme, anders niet.

Al met al vindt er dus een kopieer- en selectieproces plaats van memen en zo evolueert de cultuur. De manier waarop we dansen, praten, denken en doen verandert doordat er steeds nieuwe memen succesvol zijn.

Het ontstaan van dit culturele evolutieproces heeft volgens Susan Blackmore verregaande consequenties gehad voor onze biologische en technologische evolutie.

Veel mensen denken dat met het ontstaan van cultuur de biologische evolutie van de mens zo’n beetje tot stilstand gekomen is, maar volgens Blackmore heeft de culturele evolutie de biologische evolutie juist aangestuurd. Met memen, het vermogen tot imitatie, kregen mensen namelijk een enorm voordeel ten opzichte van andere dieren die niet op deze manier kunnen leren. Steenbijlen, vuur maken of leefstijlen zoals het jagen in groepen hoefden maar één keer uitgevonden te worden. Anderen konden die praktijken meteen overnemen, zonder dat er generaties overheen gingen om het nieuwe gedrag in de genen te verankeren. Omdat culturele evolutie veel sneller is, had de imiterende mens een enorm aanpassingsvermogen en dus een fors evolutionair voordeel.

Als gevolg daarvan ging de evolutie selecteren op het vermogen tot imitatie. Eerst nog vooral door natuurlijke selectie: slechte imitatoren hadden immers minder kans om te overleven, maar waarschijnlijk speelde later ook seksuele selectie een rol. Als goede imitatoren grotere overlevingskansen hebben, wil je graag kinderen van een goede imitator. Dat betekende dat imitatievermogen in welke vorm dan ook een aantrekkelijke eigenschap werd. Zo ontstond misschien zoiets als muzikaal talent. Niet direct iets wat de overlevingskansen van je kinderen vergrootte maar wel een bewijs van imitatievermogen en dus een voordeel in de liefde.

De gevolgen voor de biologische mens waren dramatisch: we ontwikkelden een enorm brein en taalvermogen, inclusief het verfijnde spraakapparaat dat daarvoor nodig is. Dit was gereedschap waarmee we de culturele evolutie verder mee voort konden stuwen. Of eigenlijk: we werden gereedschap van die culturele evolutie. Want als Blackmore één ding duidelijk probeert te maken, is het wel dat wij niet de baas zijn over de memen, maar dat de memen de baas zijn over ons. De mens staat ten dienste van de culturele evolutie, niet andersom.

Neem onze taal bijvoorbeeld. Waarom praten we zoveel? Hoeveel van wat we tegen elkaar zeggen, is werkelijk essentieel voor het voortbestaan van onze soort? Wat heb je vandaag allemaal al uitgekraamd waar, wel beschouwd, niemand beter van wordt? Zulke verspilling is onbegrijpelijk  als je denkt dat taal vooral een biologisch nut dient, maar niet als het voor de culturele evolutie is. We spreken zoveel om onze memen te helpen zich voort te planten en te verspreiden.

Of neem onze gedachten. Waarom denken we zoveel? Waarom spoken zo vaak precies dezelfde gedachten door ons hoofd? En… in hoeverre zijn die gedachten eigenlijk van onszelf? In hoeverre herhalen we niet, in iets aangepaste vorm die dingen die we gelezen en gehoord hebben? Biologisch gezien lijkt al dat ronddenken verspilling, maar cultureel gezien is het dat misschien wel niet. Gedachten die we steeds herhalen hebben een grotere kans om onthouden en doorgegeven te worden. Ons bewustzijn, wil Blackmore maar zeggen, dient de memen. Het brein is niet die originele bron van nieuwe ideeën die we er graag in zien, maar eerder een kopieermachine voor de memen.

En dan heb je menselijke technologische uitvindingen zoals het schrift en later de telefoon en het internet. Nuttige uitvindingen voor de mens natuurlijk, maar bedenk je eens hoe geweldig die uitvindingen wel niet waren voor de memen! Hoeveel beter ging het verspreiden van ideeën wel niet door de drukpers en wat een impact had dat wel niet op onze cultuur? En als die drukpers niet een volledig origineel idee van Gutenberg was, maar een samenraapsel van ideeën die hij ergens opgepikt had, was het dan niet gewoon een product van de memen, ten behoeve van die memen?

Zo trakteert Blackmore haar lezers op voorbeeld na voorbeeld waarin ze laat zien hoe invloedrijk de memen wel niet zijn. Er is een wereldwijd strijdperk vol zelfzuchtige memen die alleen maar uit zijn op reproductie. Om elkaar daarin de loef af te steken, sleuren ze ons mee: eerst vormden ze onze breinen om tot memenverspreiders, daarna vonden ze taal en zelfbewustzijn uit, daarna onze culturele systemen zoals religie en tot slot onze communicatietechnologie.

Als memen zo invloedrijk zijn als Blackmore beweert, is mementheorie het belangrijkste waar wetenschappers aan kunnen werken. Uiteenlopende en fundamentele wetenschappelijke vragen, zoals “Waarom hebben mensen cultuur en technologie en dieren niet?”, “Hoe kan het dat wetenschappelijke ideeën er niet altijd in slagen het te winnen van het geloof in het paranormale, buitenaardse wezens en religie?” en “Wat is het bewustzijn precies?”, kunnen nu allemaal van één eenvoudig antwoord voorzien worden: memen.

Mementheorie als theorie voor alle belangrijke vragen. Dat is te mooi om waar te zijn en dat is natuurlijk ook precies het probleem dat ik met het boek heb. Ik hoopte op een wetenschappelijke verhandeling en kreeg een boek van een gelovige. Her en der formuleert Blackmore een toetsbare hypothese, maar voor het overgrote deel blijft het boek erg speculatief.

Daarbij ontwijkt ze veel moeilijke vragen. Is imitatie wel zo uniek voor mensen? Makaken blijken hun gebruik van gereedschap razendsnel aan de komst van nieuw voedsel aan te kunnen passen: dat wijst echt op imitatie. Er zijn ook vormen van imitatie en taal gevonden bij allerlei andere diersoorten. En bestaan “memen” wel echt? Niemand kan ze vinden of zelfs maar definiëren. Zijn memen eigenlijk wel nodig (of nuttig) om culturele evolutie te verklaren? Andere theorieën van culturele evolutie blijven onbesproken in het boek. Kunnen we culturele evolutie niet beter zien als een samenspel van verschillende evoluties? Evoluties van kunst, ideologie en technologie die naast elkaar bestaan en elk hun eigen mechanismen en snelheden hebben bijvoorbeeld? Wat ‘winnen’ we eigenlijk door dit kille plaatje van zelfzuchtige memen die met ons aan de haal zijn gegaan?

Ik heb veel van mijn twijfels bij mementheorie al in mijn vorige blogje geuit en ben, dat zal duidelijk zijn, door het boek bepaald geen aanhanger geworden. Blackmores speculaties over de rol van memen in de menselijke, culturele en technologische evolutie gaan erg ver en zijn niet met overdreven veel bewijs gestut. Maar ik denk dat ik die laatste vraag naar de ‘opbrengst’ van mementheorie wel kan beantwoorden.

Want tijdens het schrijven van dit blogje is er iets belangrijks in mij veranderd. Ik voel me een stuk minder kriebelig bij het idee dat mijn gedachten niet van mijzelf zijn. Blackmore’s observatie dat onze gedachten voor een groot deel worden gevormd door wat we horen en lezen, klopt natuurlijk gewoon; en in die zin zijn we inderdaad een product van onze cultuur. Dus ja: misschien heb ik mijn gedachten wel te leen, in plaats van dat ze uit mijn eigen brein ontsproten zijn.

Is dat erg? Welnee! Dat leensysteem van ideeën verbindt me namelijk met al die mensen die er eerder eigenaar van waren en die mij ooit bevrucht of begiftigd hebben. Mijn hoofd zit vol met Mulisch en Tolstoj, met Harry Potter, met Frans Bauer en met mijn familie, vrienden, buren en collega’s. Ik draag steeds stukjes van ze mee en ik draag ze stukjes van ze uit. Liever dan een eenzaam genie met totaal originele ideeën ben ik een cultuurdrager, vol van wat van anderen is. Want zeg nou zelf… cultuurdrager zijn is zo gek nog niet.

Meer lezen?

In memen schreef ik al eens uitgebreid over mementheorie, en ook mijn blogjes ideeënsex en geheugenmachine raken aan dit idee.

Hoewel Blackmore dit zelf niet aanhaalt zijn er behoorlijk wat raakvlakken tussen haar ideeën en die van mediatheoreticus Thomas de Zengotita die ik eerder op mijn Engelse blog besprak. Met name de alles omvattende rol van imitatie in onze hedendaagse cultuur en de pop- en jeugdcultus die daar uit volgt beschrijft De Zengotita treffend.

Blackmore is te zien in een TED praatje, waarin ze wel stelt dat technologie een eigen (autonome) evolutie ondergaat. Ze noemt memen daarin ‘gevaarlijk’. Dit idee van gevaarlijke memen wordt ook in Daniel Dennet’s  TED praatje over memen benadrukt.

Onlangs verscheen in NRC een stuk over de geschiedenis van talen. In dat onderzoek blijkt een evolutietheoretisch kader prima te werken.

Dit is mijn derde boekbespreking op dit blog. Eerder nam ik Laboratory Life van Bruno Latour, en Little Science, Big Science van Derek de Solla Price al onder handen.

Je kunt natuurlijk ook The Meme Machine gewoon zelf lezen.

Memen

Memen vormen de spil in wat je wel een culturele evolutietheorie kan noemen. Richard Dawkins wijdt er in zijn boek ‘The Selfish Gene’ niet meer dan een hoofdstukje aan, maar het idee blijkt aanstekelijk en duikt op veel plekken op. Eigenlijk gebruikt Dawkins de evolutietheorie als metafoor voor de verandering van ons ‘gedachtengoed’. Memen – ideeën eigenlijk – verspreiden zich door communicatie en zijn onderhevig aan een cultureel selectieproces; net zoals genen zich door voortplanting verspreiden en aan natuurlijke selectie onderhevig zijn. Een soort heeft een genenpool, een cultuur een memenpool. Met het begrip memen in de hand kunnen allerlei concepten uit de evolutietheorie één op één ingezet worden voor het begrijpen van kennisontwikkeling.

Van mementheorie kun je van alles vinden, maar voor ik daar wat meer over zeg is het misschien goed om iets verder op de boodschap van het boek ‘The Selfish Gene’ zelf in te gaan. Dawkins is namelijk een reductionist pur sang. Het kernbetoog van Dawkins is dat de evolutie niet een evolutie van organismen of soorten is, maar een evolutie van genen. De genen vormen de bouwplannen van de organismen die ze gebruiken om de competitie met andere genen aan te gaan in hun strijd om het bestaan. Organismen zijn dus slechts “fenotypen”, machines die de genen (het “genotype”) om zich heen bouwen om zich succesvoller voort te planten. Alle zichtbare eigenschappen van die organismen zoals intelligentie of fysieke kracht zijn dus uiteindelijk terug te voeren op het succes van de genen die eigenschappen veroorzaken. Een gen in een sterk dier heeft nu eenmaal meer kans zich voort te planten dan een gen in een zwak dier. Het hele boek lang hamert Dawkins er in dat evolutie blind is; erg blind.

Terug naar de memen. De kracht van mementheorie zit vast in haar eenvoud en herkenbaarheid. Als soorten kunnen evolueren door toedoen van genen, waarom kunnen culturen dan niet evolueren door toedoen van memen? Memen springen van het ene naar het andere brein, planten zich daar, bevrucht door andere ideeën, voort en springen weer over. Sommige ideeën zijn succesvol en invloedrijk en springen van brein naar brein, andere ideeën zijn minder invloedrijk en zijn dus een kort ‘leven’ beschoren. Dit is een intuïtief idee en als de evolutietheorie zoveel verklaringskracht heeft voor het begrijpen van het ontstaan van soorten waarom kan mementheorie die rol dan niet voor de evolutie van culturen spelen?

Als metafoor vind ik mementheorie ook mooi. Ze lijkt erg op het idee van een kennisstroom dat ik eerder besprak. Het dwingt tot bescheidenheid over je eigen rol de ontwikkeling van ons gedachtengoed. Eigenlijk zegt mementheorie dat jouw ideeën niet bij jou ontspruiten, maar dat je ze te leen hebt en ze hooguit wat kan veranderen voor je ze weer de wereld in stuurt. Het beeld helpt ook om te begrijpen dat ideeënvorming iets is wat je samen doet. Je vormt ideeën door het gesprek aan te gaan met anderen; waarbij zowel de ideeën zelf als het gedachtengoed waarbinnen ze succesvol kunnen zijn zich moeten ontwikkelen. Een co-evolutie, zoals ook soorten en hun ecosysteem co-evolueren.

Maar, als theorie vind ik mementheorie nogal overschat. In tegenstelling tot genen kunnen we memen niet onder de microscoop leggen en bekijken hoe ze veranderen. Er zijn maar een beperkt aantal genen, terwijl er oneindig veel memen kunnen bestaan. De koppeling tussen genen en organisme lijken me veel harder dan die tussen memen en cultuur. Dawkins laat in zijn boek heel goed zien dat de evolutietheorie zijn kracht voor een belangrijk deel dankt aan de moderne interpretatie ervan en het wetenschappelijke apparaat dat daar omheen gebouwd is. Dat kun je niet zo maar overzetten naar de wereld van gedachten. In die zin is mementheorie op dit moment waar de evolutietheorie was toen Darwin hem net publiceerde. Een wervend inzicht en een begin, misschien.

Een goede theorie helpt vaak om de juiste vragen te stellen. Maar, ik vraag me af of mementheorie ons niet eerder op het verkeerde dan op het goede spoor zet. In mementheorie doet alleen de aanstekelijkheid van een idee er toe. Hoe we ideeën verwerken of verbeteren doet er niet toe. Het maakt niet uit hoe we aan informatie komen, hoe we leren en zelfs niet hoe we communiceren. De inhoud van de ideeën is ook niet van belang. Mementheorie vindt het niet interessant wie Martin Luther King was en wat er van zijn visie van belang is voor de mensheid. Het enige waar mementheorie zich op richt is hoe hij zijn ideeën kon verspreiden en mogelijk wat maakte dat ze in goede aarde vielen.

En dan is er nog die extra reductiestap. Dawkins betoog voor het organisme als fenotype: een machine die door de genen gebouwd wordt om zichzelf succesvoller te kunnen voortplanten is vrij overtuigend. In mementheorie kun je een zelfde stap zetten. Vaak worden dan instituten zoals de kerk aangehaald. Zijn dat niet ook hele complexe machines, met als enige doel de verspreiding van het idee van God? Is God niet gewoon een succesvolle meme, die de kerk gebruikt om zich te handhaven tussen andere ideeën? Overtuigde atheïsten vinden dit wel een mooi plaatje, maar hetzelfde recept kan je natuurlijk op elk instituut of cultuurdrager toepassen. TV kan je zien als memencentralisatie, boeken als memenconservatie, scholen zijn er om de meme van scholing voor te planten, universiteiten voor de meme van wetenschap, parlementen voor de meme democratie, en zo voort. Ik vraag me af wat we daar mee opschieten. Dat een cultuur rust op breed gedragen basisideeën is wel algemeen aanvaard; het woord mentaliteit verwijst daar ook naar. Het is ook wel een houdbare stelling dat cultuurdragers de manifestaties zijn van de basisideeën van een cultuur. We kunnen ook nog zeggen dat ze helpen om die ideeën in stand te houden, maar om dat nu het enige doel te noemen. Dat is misschien wat ongepast.

Terwijl je dit las hebben allerlei ideeën zich in je hoofd genesteld en lekker liggen seksen met andere ideeën. Sommige voortbrengsels daarvan zullen mij weer inspireren tot een nieuw blogje vol potentiële ideeënsex. Toch? Vergeet die dus niet te delen, voor het voorbestaan van onze cultuur 🙂

Meer Lezen?

Ik beschreef eerder 2 andere metaforen voor kennis in kenniscontainers en in kennisstroom.

Ook schreef ik al eens over de evolutietheorie zelf in evolutiesnelheid.

Evolutiesnelheid

De evolutietheorie is misschien wel de meest bekende wetenschappelijke theorie en ze is bedrieglijk eenvoudig, waardoor er veel misverstanden over bestaan – ook bij geleerden.  Een van de misverstanden over evolutie waar ik me het meest aan erger is dat het een langzaam proces is. Dat idee leidt tot allerlei denkfouten. Wat je bijvoorbeeld hoort en leest is: de evolutie gaat langzaam en daarom zijn we nog niet aangepast aan onze omgeving vol met computers en andere nieuwe media.  Onze genen zijn immers afgestemd op een jagers- verzamelaarsleven op de steppe. Misschien denk je nu: “Ja maar dat klopt toch gewoon? Waar heb je het over”. Nou, dat zal ik uitleggen.

Hoe snel gaat evolutie? Dat hangt van een aantal dingen af. Allereerst zijn er twee soorten evolutie waar je rekening mee moet houden: selectie van genen binnen een soort en verandering van genen zelf. Het eerste proces kan heel snel gaan. Darwin merkte dit in de Origin of Species al op: fokkers die consequent het nageslacht van dieren op bepaalde eigenschappen selecteerden slaagden er binnen een paar generaties al in een soort te veredelen. Laten we deze vorm van evolutie maar even soortveredeling noemen – ook als het om de mens gaat en de natuur de selectie doet en niet een fokker. Soortveredeling komt in de natuur bijvoorbeeld voor als de omstandigheden snel veranderen. Bijvoorbeeld als er andere roofdieren in de omgeving gaan leven. Het gaat niet van de een op de andere dag, maar als we 20 jaar voor een mensengeneratie rekenen kan een snelle soortveredeling van de mens in een paar eeuwen (10-20 generaties) plaats vinden.

Laten we de tweede vorm van evolutie, het veranderen van genen, maar even genverbetering noemen. Dit proces gaat veel langzamer. Nieuwe genen ontstaan door kopieerfouten, die erg weinig voorkomen en die bovendien vaker negatief dan positief uitpakken. Bovendien moet een eventueel succesvol nieuw gen zich nog over de hele populatie verspreiden. Nu worden er per jaar meer dan 100.000 mensen geboren.  Dus is het geen gekke gedachte dat er elke generatie tenminste één positieve gen-mutatie plaats vind. Die moet zich vervolgens wel over 6 miljoen mensen verspreiden, wat zeker meer dan 20 generaties duurt. Maar de mens stapte ongeveer 10000 jaar geleden, 50 generaties dus, over op de landbouw. Een ‘landbouw gen’, bijvoorbeeld voor tolerantie tegen lactose heeft dus wel degelijk kans gehad zich over de mensheid te verspreiden.

Zelf denk ik dat het snellere proces van soortveredeling veel belangrijker is dan genverbetering. Natuurlijk hebben we onze genen nog niet aangepast aan iPads, maar veel eigenschappen die handig zijn bij het omgaan met iPads zitten allang in onze gemeenschappelijke genenpool: intelligentie, de mogelijkheid om te gaan met prikkels, abstract redeneren en een reeks andere dingen die handig zijn om met iPads om te kunnen gaan, waren op de steppe ook al handig, en kunnen zich nu gewoon via soortveredeling versterken. Bovendien is die iPad ook niet uit de lucht komen vallen, maar één teken van een maatschappij die allang aan het veranderen is. Lezen doen we sinds de Grieken, de drukpers is in de 16e eeuw uitgevonden, radio bestaat al meer dan een eeuw. Als omgaan met grote hoeveelheden informatie de mensheid verder helpt dan is de versterking van die genen allang aan de gang.

Ik denk dat het fair is om te stellen dat technologische ontwikkelingen sneller gaan dan de evolutie, maar we moeten niet net doen alsof de mens nog altijd een steppemens is. Dieetgoeroes die stellen dat ons lijf gebouwd is op het eten uit de prehistorie stappen over 10.000 jaar evolutie heen die er echt wel toe doen. Bovendien moeten we niet net doen alsof een technologische uitvinding, zelfs zoiets baanbrekends als het internet,totaal nieuwe dingen van ons mensen vraagt. Een wereld met internet vraagt niet ineens om andere lichaamsdelen, andere perceptie vermogens of intelligentie. Hooguit hebben we een beetje meer nodig van iets dat we al veel langer gebruikten. Evolutie gaat sneller dan je denkt en zelfs als het langzamer gaat dan de ontwikkeling van de technologie, wil dat niet zeggen dat evolutie iets van het verleden is. Onze soort evolueert nog steeds, in een gestaag tempo, elke dag; en zelf vind ik dat een prettige gedachte.